Analisa Kinerja Dan Kekuatan Kostruksi Shell Pada Surface Condenser
DOI:
https://doi.org/10.32832/almikanika.v4i1.7149Keywords:
kinerja shell, kekuatan konstruksi shell, Surface Condenser.Abstract
ABSTRAK
Penelitian dilakukan untuk mengetahui kinerja shell dari surface condenser dan mengetahui kekuatan konstruksi shell. Dalam tahapan penelitian ini, penulis menghitung perpindahan panas, perpindahan panas total dan overall heat transfer (NTU). Berikutnya menghitung kekutan konstruksi shell dengan tahapan melakukan perhitungan ketebalan dinding shell berdasarkan tekanan internal, menghitung MAWP pada shell dan head, menghitung tekanan tes hidrostatik pada shell. Perhitungan tekanan external shell dan menghitung kekuatan sambungan las, pada perhitungan kekuatan konstruksi menggunakan standar ASME yang terkait. Dari hasil perhitungan, kinerja shell pada surface condenser dan kekuatan kostruksi shell pada surface condenser didapatkan hasil kinerja surface condeser didapatkan LMTD (log mean temperature diference) 14,67°C. Overall Heat Transfer 8,3478w/m² C dan over design 0,10%. Dari hasil perhitungan ketebalan shell dan head pada surface condenser didapatkan hasil ketebalan shell 4,610 mm dan tebal Head 4,59 mm, perhitungan MAWP shell 418,59 psi untuk perhitungan tekanan tes hidrostatik untuk mengetahui tekanan hidrostatik sebesar 223,17 psi, dan hasil perhitungan sambungan las menggunakan elektroda ER 70S-6 diperoleh tegangan pengelasan 2.557,94 psi.
Kata kunci : kinerja shell; kekuatan konstruksi shell; Surface Condenser.
ABSTRACT
The research was conducted to determine the shell performance of the surface condenser and to determine the strength of the shell construction. In this research stage, the writer calculates heat transfer, total heat transfer and overall heat transfer (NTU), then calculates the shell construction strength by calculating the shell wall thickness based on internal pressure, calculating MAWP on the shell and head, calculating the hydrostatic test pressure on the shell, calculating the external shell pressure and calculating the strength of the welded joint, in calculating the construction strength using the relevant ASME standards. ,67°C, Overall Heat Transfer 8.3478w/m² C and 0.10% over design. From the calculation of the thickness of the shell and head on the surface condenser, the shell thickness is 4.610 mm and the head thickness is 4.59 mm, the calculation of MAWP shell 418,59 psi, for hydrostatic test pressure calculation to find out hydrostatic pressure of 223.17 psi, and the results of the calculation of the weld connection using the ER 70S-6 electrode obtained a welding voltage of 2.557.94 psi.
Keywords : surface Condenser; shell performance; shell construction strength.
References
L. O. M. Firman, Y. S. Gaos, and P. Da Silva, "Optimasi kondensor untuk pembangkit listrik tenaga orc,” J. Ilm. TEKNOBIZ Vol. 6 No.1, vol. 6, no. 1, pp. 8–12, 2016.
A. G. McDonald and H. L. Magande, Fundamentals of Heat Exchanger Design. 2012.
Y. S. Gaos, M. Idham, B. Aji, and I. Wiradinata, "Exergy Analysis of A Hermatic Turbine 500 kW Organic Rankine Cycle Geothermal Binary Power Plant,” pp. 176–185, 2018.
P. Sistem, P. Plta, and I. H. Juanda, "REVERSE ENGINEERING WATER COOLER KAPASITAS 400 LITER / JAM,” vol. 2, no. 2, pp. 92–96.
J. I. Rotary et al., "PENENTUAN NILAI EFEKTIVITAS CONDENSER DI PLTU PAITON,” PENENTUAN NILAI Ef. Condens. DI PLTU Pait. UNIT 5 PT. YTL JAWA TIMUR Asrorin, vol. 1, no. 1, p. 2, 2016.
A. F. Sari, Shell and Tube Heat Exchanger Design pada Heater dengan Pemanas Steam pada Ethanolamine Plant. 2019.
S. Kakaç, H. Liu, and A. Pramuanjaroenkij, Heat Exchangers: Selection, Rating, and Thermal Design, Third Edition, vol. 6. 2012.
R. Firdaus, T. A. Ajiwiguna, and M. R. Kirom, "PENUKAR KALOR SPIRAL TUBE IN SHELL EVALUATION OF HEAT TRANSFER COEFFICIENT AND EFFECTIVENESS ON,” vol. 6, no. 2, pp. 5051–5057, 2019.
F. T. Industri, "RE-DESIGN SURFACE CONDENSER DI PLTU UNIT 4 PT . PJB UP GRESIK DENGAN ANALISIS FINAL PROJECT – TM 141585 RE-DESIGN SURFACE CONDENSER IN STEAM POWER PLANTS UNIT 4 PT . PJB UP GRESIK WITH THERMAL ANALYSIS,” 2013.
F. Eimann, S. Zheng, C. Philipp, A. H. Omranpoor, and U. Gross, "International Journal of Heat and Mass Transfer Dropwise condensation of humid air - Experimental investigation and modelling of the convective heat transfer,” vol. 154, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.11973.
W. A. Khan, J. R. Culham, and M. M. Yovanovich, "Convection heat transfer from tube banks in crossflow: Analytical approach,” Int. J. Heat Mass Transf., vol. 49, no. 25–26, pp. 4831–4838, 2006, doi: 10.1016/j.ijheatmasstransfer.2006.05.042.
J. Lu, H. Cao, and J. M. Li, "Condensation heat and mass transfer of steam with non-condensable gases outside a horizontal tube under free convection,” Int. J. Heat Mass Transf., vol. 139, pp. 564–576, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.05.049.
E. A. Saleh and S. J. Ormiston, "A sharp-interface elliptic two-phase numerical model of laminar film condensation on a horizontal tube,” Int. J. Heat Mass Transf., vol. 102, pp. 1169–1179, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.07.013.
I. Bashtani and J. A. Esfahani, "ε-NTU analysis of turbulent flow in a corrugated double pipe heat exchanger: A numerical investigation,” Appl. Therm. Eng., vol. 159, no. May, pp. 1–11, 2019, doi: 10.1016/j.applthermaleng.2019.113886.
I. Pendahuluan, "OPTIMASI SHELL AND TUBE KONDENSOR DAN PEMANFAATAN,” vol. 4, no. 2, pp. 86–93.
F. H. Diyantama, M. M. Munir, and F. Bisono, "Analisa Perhitungan Optimum Thickness , MAWP , Tegangan , dan Lifetime pada Gas Dryer dengan Material A516M Gr . 70 pada Proyek SPBG ( Stasiun Pengisian Bahan Bakar Gas ),” no. 2656, pp. 27–32.
M. J. Ngarasati, M. M. Munir, and E. N. Budiyanto, "Perancangan dan Analisis Vertical Pressure Vessel Tipe Gas Separator untuk Penambahan kapasitas Gas P lant,” pp. 28–33.
R. Pramana and H. Irawan, "Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan Sistem Kamera Pengamatan Bawah Laut,” vol. 06, no. 01, pp. 70–77, 2017.
A. Boiler and P. V. Code, "Section v 2015,” 2015.
ASME, "Rules for Construction of Pressure Vessels,” ASME Boil. Press. Vessel Code, 2013.
J. G. Feldstein, "Welding and brazing qualifications,” ASME Boil. Press. Vessel Code, vol. 2, pp. 189–225, 2002, doi: 10.1115/1.859872.ch25.
S. Sahajpal and P. D. Shah, "Thermal Design of Ammonia Desuperheater-Condenser and Comparative Study with HTRI,” Procedia Eng., vol. 51, no. NUiCONE 2012, pp. 375–379, 2013, doi: 10.1016/j.proeng.2013.01.052.