REINFORCED CONCRETE BEAM AND COLUMN PROGRAMMING BASED ON SNI:2847-2019 ON SMARTPHONE USING TEXAS INSTRUMENTS

Toni Hartono Bagio ${ }^{1 *}$, Eugene Yudhistira Baggio ${ }^{2}$, Sri Wiwoho Mudjarnako ${ }^{3}$, Pio Ranap Tua Naibaho ${ }^{4}$
1,4 Department of Civil Engineering, Universitas Tama Jagakarsa, Jakarta, INDONESIA
1,2,3 Department of Civil Engineering, Universitas Narotama Surabaya, INDONESIA
E-mail: tony@narotama.ac.id

Abstract

The development of technology in the last few years can not be denied that it has developed very rapidly. In building construction, reinforced concrete beam and columns calculations also utilizing that technology development. Input data used to calculate reinforcement of beam and column are material property, section property and internal forces. Calculation of reinforcement beam using quadratic equation method and reinforcement column using Newton-Raphson method and divided-by-two method.Calculation results are flexural reinforcement As (longitudinal compression area) and As' (longitudinal tension area), shear reinforcement Av (transversal area) and S (distance of Av), torsional reinforcement Avt (transversal area due to torsional and/or shear), S (distance of Avt), Along (longitudinal area due to torsional buckling), column circular reinforcement Atot (total of longitudinal area), column rectangular two faces reinforcement Atot (total of longitudinal area), column rectangular four faces reinforcement Atot (total of longitudinal area), column biaxial reinforcement Atot (total of longitudinal area). The program determines As, As' and Atotal, the code is written using the Texas Instruments programming language, so that it can be applied to smartphones. Smartphone and manual calculation, for all cases not more than 5%, the calculation using Texas Instrument is accurate.

Keywords: smartphone; texas instruments; Newton-Raphson method; divided by two method; beam and column reinforcement.

Received:	Revised:	Accepted:	Available online:
$2021-07-27$	$2021-08-16$	$2021-10-05$	$2021-10-20$

INTRODUCTION

Reinforced concrete beams are assumed to be multi-layered, which consists of layers of concrete and layers of reinforcement, analyzed with an element model, using the FORTRAN language (Abdi.FN, 2008). STAAD software, to analyze and design concrete beams and columns and compiled in Excel to summarize the results of STAAD (Fernandez.RJ, et.al, 2017). The mix design program, written in the Borland Delphi programming language, but does not discuss concrete reinforcement (Vectoriarda.US, et.al, 2014). Other researchers discuss reinforcing concrete columns, without using programming (Kriastianto,A.et.al, 2012; Bagio.TH, Kusuma.B, 2012; Nawy, et.al, 2010). Multiple reinforcement with optimum design, using annealing simulation, which discusses the design of reinforced concrete with the ultimate strength design method (Bagio.TH, Kusuma.B, 2012; Ferguson,PM,et.al, 1986).

Constraints used in this study were bending beam, minimum beam width, and deflection, while the optimization was using annealing simulation method (GalebAC, 2018). Program for special reinforcement for columns, [9]. Analysis and design of beam column joints based on SNI 2847-2019 (Bagio.TH, Kusuma.B, 2012; Nawy, et.a1, 2010;LeungCK, Simmonds,SH, 1984bhatt,P, et.al, 2006; McCormac,JC, Brown,RH, 2014; Kadarningsih,R.et.al, 2017). Column reinforcement, ba sed on the column equivalence concept, where the axial load on the column, indirectly gives an additional moment, assuming eccentricity (Afefy,HM, El-Tony,TM, 2016).

A computer program for concrete reinforcement in portals, based on cracked beams, discusses iterative procedures, ACI (American Code) and CEB (Euro Code) models are compared (ACI, International, 201; ACI Comittee318, 2014; Computers \& Structures Inc, 2004; Computers \& Structures Inc, 2004). Reinforced concrete with and without limitation (curtailment) of
reinforcement for shear and bending, using Code IS 456-2000 (Ponanda,MR, MohsinM, 2017). Computer program about sectional analysis and design of beams, using visual basic programming language. Discussion about beams, columns, footings and designs on bending, shear, axial and torsion (ACI Comittee318, 2014; Muhammad,I, Mahmood,A, 2004).

General programs for calculating concrete reinforcement for beams and/or columns are all using a PC or a laptop, in the new era, smartphone is not only to call, but it will come to replacing PC in your hand, with Wabbitemu applications and using the TI (Texas Instruments) programming language (Texas Instrument, 2019; Texas Instruments, 2019).

BASIC THEORY

Flexural of beam.

Calculation of reinforced concrete beam due to bending moment, the properties of the beam and the moment from the results of the structural a nalysis are needed, figure 1 .

Figure 1. Beam internal forces at ultimate condition. (Source: McCORMAC, 2014)
Property of flexuralbeam, $\mathrm{fc}^{\prime}=$ compressive strength of concrete $(\mathrm{MPa}), \mathrm{fy}=$ yield strength of steel (MPa), $\mathrm{fs}^{\prime}=$ compressive strength of steel (MPa), $\mathrm{b}=$ width of rectangularbeam $(\mathrm{mm}), \mathrm{h}=$ height of rectangular beam $(\mathrm{mm}), \mathrm{d}=$ effective height of beam $(\mathrm{mm}), \mathrm{Mu}=$ bending moment at the beam $(\mathrm{kNm}), \mathrm{As}=$ tension reinforcement $(\mathrm{mm} 2)$, As' $=$ compression reinforcement $(\mathrm{mm} 2)$, see figure 1.

$$
\begin{align*}
& \beta_{1}=0.85-\frac{\left(f c^{\prime}-28\right)}{140} \tag{1}\\
& f_{s}^{\prime}=600 \frac{c-d^{\prime}}{c} \leq f_{y} \tag{2}\\
& a=\frac{A s f y-A s^{\prime}\left(f s^{\prime}-0.85 f c^{\prime}\right)}{0.85 f c^{\prime} b} \tag{3}\\
& M n=\frac{M u}{\phi} ; \phi=0.9 \tag{4}\\
& M n=\left[A s f y-A s^{\prime}\left(f s^{\prime}-0.85 f c^{\prime}\right)\right]\left[d-\frac{a}{2}\right]+A s_{1}\left(f s^{\prime}-0.85 f c^{\prime}\right)\left(d-d^{\prime}\right) \tag{5}
\end{align*}
$$

Shear Beam Reinforcement

Inclined cracks can develop in the webs of reinforced concrete beams, either a extensions of flexural cracks or occasionally as independent cracks. The first of these two types is the flexure - shear cracks.

Volume 10,No. 2, December 2021, pp.287-300
DOI: http://dx.doi.org/10.32832/astonjadro.v1 0i2

Figure 2. Beam with vertical stirrups (Source: McCORMAC, 2014)
Property of beams same as flexural beam, $f c^{\prime}, f y, b, d, h, f y t=$ yield strength of stirrups (MPa), $V u=$ shear force of beam (kN), $A v=$ Area of stirrups $\left(\mathrm{mm}^{2}\right), s=$ space of stirrups (mm), ds = diameter of stirrups, $n k=$ numbers of stirrups legs (≥ 2)

$$
\begin{align*}
& V_{n}=\frac{V_{u}}{\phi} ; \phi=0.75 \tag{6}\\
& V_{c}=\lambda \frac{\sqrt{f_{c}{ }^{\prime}}}{6} \times b_{w} \times d \tag{7}\\
& A v=n k \times 0.25 \times \pi \times d s^{2} \tag{8}
\end{align*}
$$

Torsion Beam Reinforcement

Reinforced concrete members are subjected to pure torsion, they will crack along 45° spiral lines when the resulting diagonaltension exceeds the design strength of the concrete.

Property of torsionalbeams same as beam with shear, $f c^{\prime}$, $f y, f y t, b w, d, h, V u, A v, s, d s, A t=$ torsional stirrups $\left(\mathrm{mm}^{2}\right), T u=$ torsional moment $(\mathrm{kNm}), V n, V c$ from equation (6), and equation (7)

$$
\begin{align*}
& T_{n}=\frac{T_{u}}{\phi} ; \phi=0.75 \tag{9}\\
& A t=2 \times 0.25 \times \pi \times d s^{2} \tag{10}\\
& X=b w ; Y=h \tag{11}
\end{align*}
$$

Figure 3. Imaginary space truss (Source: McCORMAC, 2014)

Figure 4. Cross section of beam (Source: Bagio, 2019)

$$
\begin{align*}
& X_{1}=X-2 \times\left(d^{\prime}+\frac{d s}{2}\right) ; Y_{1}=Y-2 \times\left(d^{\prime}+\frac{d s}{2}\right) \tag{12}\\
& A_{c p}=X \times Y ; A_{o h}=X_{1} \times Y_{1} ; A_{o}=0.85 \times A_{o h} \tag{13}
\end{align*}
$$

$$
\begin{align*}
& P_{c p}=2 \times(X+Y) \quad P_{h}=2 \times\left(X_{1}+Y_{1}\right) \tag{14}\\
& T_{c}=\frac{\sqrt{f_{c}^{\prime}}}{12} \times \frac{A_{c p}^{2}}{P_{c p}} \tag{15}\\
& \text { IF } T_{n} \leq T_{c} \text { THEN } T_{n}=0 ;
\end{align*}
$$

Column Reinforcement

All columns are subjected to some bending as well as axial forces, and they need to be proportioned to resist both. Property of rectangular column and circular same as flexuralbeam $f c$ ', $f y, b, d, h, M u$, special for circular column $b=0$, and $P u=$ Axial load (kN).

Figure 5. Column rectangular stress - strain diagram (Source: Nasce, 2010)

Figure 6. Column circular stress dia gram (Source: Nawy, 2010)

Rectangular column (Figure 5)
Moment capacity and forces capacity in concrete area
$a=\beta 1 \times c$
$C c=0.85 \times f c^{\prime} \times b \times a$
$M c=\quad C c \times(h-a) / 2$
Cicular column (Figure 6)
Moment capacity and forces capacity in concrete area

$$
\begin{align*}
z & =(1-2 \times \beta 1 \times c / h) \tag{19}\\
\theta & =\operatorname{ArcCos}(z) \\
A c & =0.25 \times h^{2} \times[\theta-0.5 \times \operatorname{Sin}(2 \times \theta)] \\
y & =[h \times \operatorname{Sin}(\theta)]^{3} /(12 \times A c) \\
C c & =0.85 \times f c^{\prime} \times A c \\
M c & =0.85 \times f c^{\prime} \times A c \times y
\end{align*}
$$

Volume 10,No. 2, December 2021, pp.287-300
DOI: http://dx.doi.org/10.32832/astonjadro.v1 0i2

Column Biaxial Bending

Many columns are subjected to biaxial bending, that is, bending about both axes. Corner columns in buildings where beams and girders frame into the columns from both directions are the most common cases.

Figure 7. Column biaxialbending and axialload (Source: Nawy, 2010)
Property of biaxialbending moment for column same as rectangular column $f c^{\prime}, f y, b, h, P u, M u x=$ Moment at x-direction (kNm), Muy = Moment at y-direction (kNm)
Interaction formula load contour modified method,

$$
\begin{equation*}
\left(\frac{P n-P n b}{P n o-P n b}\right)+\left(\frac{M n x}{M n b x}\right)^{1.5}+\left(\frac{M n y}{M n b y}\right)^{1.5} \approx 1 \tag{25}
\end{equation*}
$$

Texas Instrument

Programming using TI (Texas Instrument) difference with programing using PC. The variables on TI , only 27 variables (PC unlimited variables). Display on TI84 Plus C Silver Edition has 8 lines and 24 columns, and TI 84 Plus has 8 lines and 16 columns.

Figure 8. Texas Instruments display (a) TI84 Plus C Silver, (b) TI-84 Plus

RESEARCH METHODS

Research method to calculate beam reinforcement due to bending, shear and torsion as well as calculating uniaxial or biaxialcolumn reinforcement is fc ', fy, b, h, and external forces such as Mu , Vu, Tu, and for columns Mux, Muy, Pu . It will be explained in detail in the next chapter.

Flexural Design of Beams.

Figure 9. Strain dia gram on beam (Source: Bagio,2019)

$$
\begin{align*}
& c_{\max }=\frac{3}{8} d \tag{26}\\
& a_{\max }=\frac{3}{8} \beta_{1} d \tag{27}
\end{align*}
$$

IF $d<\sqrt{\frac{M_{n}}{0.425 \cdot f_{c} \cdot b}}$ THEN "CHANGE DIMENSION"

$$
\begin{equation*}
a=d-\sqrt{d^{2}-\frac{M_{n}}{0.425 \cdot f_{c}^{\prime} \cdot b}} \tag{28}
\end{equation*}
$$

IF $a>a_{\text {max }}$ THEN $a=a_{\text {max }}$

$$
\begin{align*}
& \lambda=f_{y} \times\left(d-\frac{a}{2}\right) \tag{29}\\
& \gamma=\left(f_{s}^{\prime}-0.85 f_{c}^{\prime}\right) \times\left(\frac{a}{2}-d^{\prime}\right) \tag{30}\\
& C_{c}=0.85 \times f_{c}^{\prime} \times a \times b \tag{31}\\
& \delta=\frac{M_{n} \times f_{y}-C_{c} \times \lambda}{M_{n} \times f_{s}^{\prime}+C_{c} \times \gamma} \tag{32}\\
& A s=\frac{M_{n}}{\lambda+\delta \times \gamma} \tag{33.a}\\
& A s^{\prime}=\delta \times A s \tag{33.b}
\end{align*}
$$

Shear Cracking of Reinforced Concrete Beams.

$$
\begin{align*}
& V_{s}=V_{n}-V_{c} \tag{34}\\
& A_{v \text { min }}=\kappa \times \frac{b_{w} \times s}{f_{y t}} ; \kappa=\frac{\sqrt{f_{c}{ }^{\prime}}}{16} \geq 0.35 \tag{35}
\end{align*}
$$

Zone area and $\lambda=1$:
Zone $1: V_{n} \leq 0.5 \cdot V_{c} \quad ; \quad \frac{A_{v}}{s}=0$
Zone $2: 0.5 \cdot V_{c}<V_{n} \leq V_{c} \quad ; \quad \frac{A_{v}}{s}=\kappa \frac{b_{w}}{f_{y t}} ; \kappa=\frac{\sqrt{f_{c}{ }^{\prime}}}{16} \geq 0.35 \quad ; \quad s=d / 2 \leq 600$
Zone $3: V_{c}<V_{n} \leq 3 \cdot V_{c} \quad ; \quad \frac{A_{v}}{s}=\frac{V_{s}}{f_{y t} \times d} \quad ; \quad s=d / 2 \leq 600$

Zone $4: 3 \cdot V_{c}<V_{n} \leq 5 \cdot V_{c} \quad ; \quad \frac{A_{v}}{s}=\frac{V_{s}}{f_{y t} \times d} \quad ; \quad s=d / 4 \leq 300$
Zone $5: V_{n}>5 \cdot V_{c}$; "CHANGE DIMENSION"

Design of Torsional Reinforcing.
section get shear and torsion forces (from figure 3 and figure 4)

$$
\begin{equation*}
\operatorname{Var} L=\sqrt{\left(\frac{V_{n}}{b_{w} \times d}\right)^{2}+\left(\frac{T_{n} \times P_{h}}{1.7 \times A_{o h}{ }^{2}}\right)^{2}} \quad ; \quad \operatorname{Var} R=\frac{V_{c}}{b_{w} \times d}+\frac{2 \sqrt{f_{c}{ }^{\prime}}}{3} \tag{37}
\end{equation*}
$$

IF $\operatorname{VarL}>\operatorname{Var} R$ THEN "CHANGE DIMENSIONS"

$$
\begin{align*}
& \frac{A_{v t, m i n}}{s}=\kappa \frac{b_{w}}{f_{y t}} ; \kappa=\frac{\sqrt{f_{c}^{\prime}}}{16} \geq 0.35 \tag{38}\\
& A \ell_{m n}=\frac{5}{12} \frac{\sqrt{f_{c}^{\prime}}}{f_{y t}} A_{c p}-\frac{A_{t}}{s} P_{h} \frac{f_{y t}}{f_{y}} \tag{39}\\
& \frac{A_{t}}{s}=\frac{T_{n} \times \tan (\theta)}{2 \times A_{o} \times f_{y t}} \quad ; \quad \frac{A_{v}}{s}=\frac{V_{s}}{f_{y t} \times d} \tag{40}\\
& \frac{A_{v t}}{s}=2 \frac{A_{t}}{s}+\frac{A_{v}}{s} \tag{41}\\
& A \ell=\frac{A_{t}}{s} P_{h} \frac{f_{y t}}{f_{y}} \cot ^{2} \theta \tag{42}
\end{align*}
$$

Design of Column with Axial Load and Bending Moment

Rectangular column (Figure 10.a)
Number of rows' layer $=\mathrm{N}$, number of columns' layer $=\mathrm{Nk} ; N k=\operatorname{INT}(b / h \times N)+1$
Number of total bars (ntot) $=2(N k+N-2)$
Section area, $A g r=b \times h$
Rebararea, $A s(i)=\rho t \times A g r \times n b$, where:

$$
\text { If }(\mathrm{i}=1 \text { or } \mathrm{i}=\mathrm{N}) \text { THEN } n b=\text { Nk/ntot, ELSE } \mathrm{nb}=2
$$

Cicular column (Figure 10.b)
Number of bars $=\mathrm{N}$
Number of total bars (ntot) $=2 \times \mathrm{N}$
Section area (Agr) $=0.25 \pi \times \mathrm{h}^{2}$
Rebararea as $(\mathrm{i})=\rho \mathrm{t} \times \mathrm{Agr} \times 2$
General
Astotal $=\rho \mathrm{t} \times \mathrm{Agr}, \quad 1 \% \leq \rho \mathrm{t} \leq 8 \%$
Spacing of rebars, $\mathrm{s}(i)=d^{\prime}+(i-1)\left(d-d^{\prime}\right) /(N-1)$
Rebarstressing, $f s s(i)=600 \times(c-s(i)) / c$

Figure 10.a. Column rectangular with area, depth and stress (Source: Nawy, 2010)

Figure 10.b Column circular with depth $\left(d_{i}\right)$ and stress $\left(f_{s}\right)$ (Source: Nawy, 2010)
Compression force and tension force in the reinforcement and moment of the internal forces of the column concrete

$$
\begin{align*}
& C s=\sum_{i=1}^{N} f s s(i) \times A s(i) \tag{43}\\
& M s=\sum_{i=1}^{N} f s s(i) \times A s(i) \times \frac{(h-s(i))}{2} \tag{44}
\end{align*}
$$

Internal force total, IF rectangular column, $C c$ from equation (17), $M c$ from equation (18), IF circular column $C c$ from equation (23), $M c$ from equation (24)

$$
\begin{align*}
& P_{o}=C_{c}+C_{s} \tag{45}\\
& M_{o}=M_{c}+M_{s} \tag{46}\\
& e_{u}=\frac{M_{u}}{P_{u}} \tag{47}\\
& e_{o}=\frac{M_{o}}{P_{o}} \tag{48}
\end{align*}
$$

Using Newton-Raphson method until, $e_{u} \approx e_{o}$, to get c value

Volume 10,No. 2, December 2021, pp.287-300
DOI: http://dx.doi.org/10.32832/astonjadro.v1 0i2

Design reinforcement column with Biaxial Bending.

Notation of Figure 11.
$\mathrm{nb}=$ number of bars x direction
$\mathrm{nh}=$ numberof bars y direction $=\mathrm{INT}(\mathrm{h} / \mathrm{b} \times \mathrm{nb})$
$\mathrm{ntot}=$ totalnumbers of bars $=2 \times(\mathrm{nb}+\mathrm{nh}-2)$
Asx OR Asy $=$ rebar area in x -direction OR in y -direction
$\mathrm{dx}=$ effective height $;$ dy $=$ effective width
$\rho \mathrm{t}=$ Astot $/(\mathrm{b} \times \mathrm{h}) ; 1 \%<\rho \mathrm{t} \leq 8 \%$
see figure 12.a, and figure 12.b

$$
\rho \mathrm{x}=\rho \mathrm{t} /(\mathrm{h} / \mathrm{b}+1) \quad ; \quad \rho y=\rho t /(b / h+1)
$$

Figure 11. (a) dimension of column, (b) bars in column

Figure 12.a. Moment and Axial in y-direction

Figure 12.b. Moment and Axial in y-direction
For Interaction formula using equation (25)

$$
\begin{equation*}
\left(\frac{P n-P n b}{P n o-P n b}\right)+\left(\frac{M n x}{M n b x}\right)^{1.5}+\left(\frac{M n y}{M n b y}\right)^{1.5} \approx 1 \tag{50}
\end{equation*}
$$

where :

$$
\begin{align*}
& P n=P u / \emptyset \tag{51}\\
& M n x=M u x / \emptyset \tag{52}\\
& M n y=M u y / \emptyset \tag{53}\\
& P n o=0.85 \times f c c^{\prime} \times(A g r-A s t)+f y \times A s t \tag{54}\\
& P n b x=C c x+C s x-T x \tag{נצכ}\\
& P n b y=C c y+C s y-T y \\
& P n b=M A X(P n b x, P n b y) \tag{57}\\
& M n b x=C c x \times\left(d x-d^{\prime \prime}-a x / 2\right)+C s x \times\left(d x-d^{\prime}-d^{\prime \prime}\right)+T x \times d^{\prime \prime}, \tag{58}\\
& M n b y=C c y \times\left(d y-d^{\prime \prime}-a y / 2\right)+C s y \times\left(d y-d^{\prime}-d^{\prime \prime}\right)+T y \times d, \tag{59}
\end{align*}
$$

RESULTS AND DISCUSSIONS

Smartphone Application

Initial information will appear first, when the smartphone is turned on, followed by the initial selection menu.

Figure 13. Opening menu on smartphone

Figure 14.a. Flexure beam Input normal flofit futo real ridifin mp ■]

Shear Only
$\mathrm{fc}^{\prime}=35$
$f y=420$
b $=350$
$h=700$
$d^{\prime}=65$
Vu $=539$
ds $=10$
nk $=3$
Figure 15.a. Shear beam Input
NORMAL FLOAT GUTO REAL RADIAN MP

TORSI

$\mathrm{fc}^{\prime}=27.6$
fy $=414$
b $=356$
$h=635$
$d^{\prime}=65$
Tu=50.9
$\mathrm{Vu}=180$
$\mathrm{ds}=11.3$
1)Solid/2)Hollow?(1/2)=1

Figure 16.a. Torsion beam Input
NORMAL FLOAT GUTO REAL RADIAN MP
COLUMN 024=?0
$\mathrm{fc}^{\prime}=27$
fy $=420$
D $=400$
$d^{\prime}=40$
Mu=250
$\mathrm{Pu}=400$

Figure 17.a. Circular column Input

Reinforcement Beam Result b $=300$
$h=550$
$M u=630$

$$
\begin{aligned}
& \mathrm{As}^{\prime}=1101.805666 \\
& \mathrm{Rs}=4226.571745
\end{aligned}
$$

Figure 14.b. Flexure beam Output normal float auto real radian mp

```
Shear Result
```

```
b =350
h =700
Vu=539
```

Zone : 4
Av/S = 1.872968593
3 D10-125.8

Figure 15.b. Shear beam Output
Normal float futo real radian Mp

$$
\begin{array}{cc}
\text { Torsion } & \text { Result } \\
b=356 & h=635 \\
\text { Vu=180 } & \text { Tu }=50.9
\end{array}
$$

Solid Section

$$
\begin{array}{ll}
\text { Atv } / \mathrm{S}= & 1.622424579 \\
\text { 2D11.3 }-123.6266915 \\
\text { Alon9 }= & 1091.543034
\end{array}
$$

Figure 16.b. Torsion beam Output

Column Result: Circular $D=400$
$\mathrm{Mu}=250 \quad \mathrm{Pu}=400$
$c(\mathrm{~mm})=157.6742405$
$\phi=.84$
$\rho(\%)=4.39$
Atot $=5517.42$
Figure 17.b. Circular column Output

Figure 20.a. Column biaxial Input

Figure 18.b. Column two faces Output NORMAL FLOAT fUTU REAL RGDIfiN MP

```
Column Result:Rect 4faces
    b =400 h =400
    Mu=250 Pu=400
c(mm)= 108.8499873
\phi = .9
\rho(%) = 2.2
Atot = 3525
```

Figure 19.b. Column four faces Output NORMAL FLOAT AUTO REAL RADIAN MP

```
Column Biaxial Result
Atot (mm2)= 6633.36875
Pu/\phi (kN) = 1338.754765
Pno (kN) = 6225.488232
Pnb (kN) = 1240.35593
Mux/\phi(kNm)= 268.360864
Mnbx (kNm)= 418.7591744
Muч/\phi(kNm)= 157.0520966
Mnby (kNm)= 267.6975909
\rho(%);Eq(%)= 4.28 ; 98.21
```

Figure 20.b. Column biaxial Output

Figure 14 to figure 20 , consists of 2 (two) parts, namely part a) is input data and part b) is output result. respectively are beam reinforcement designs namely flexural bending reinforcement (figure 14), shear reinforcement (figure 15), torsion reinforcement (figure 16), and column reinforcement design circular column (figure 17), rectangular column two faces (figure 18), rectangular column four faces (figure 19) and biaxialbending column (figure 20)

Manual Calculation

Calculation of reinforcement for beams and columns manually using the formula for reinforcement of concrete due to bending, shear, torsion, axial and biaxialbending.

1 Flexural reinforcement
Initial data required : $\mathrm{fc}^{\prime}=35 \mathrm{MPa} ; \mathrm{fy}=400 \mathrm{MPa} ; \mathrm{b}=300 \mathrm{~mm} ; \mathrm{h}=550 \mathrm{~mm} ; \mathrm{d}^{\prime}=65 \mathrm{~mm}$;
$\mathrm{Mu}=450 \mathrm{kNm}$. The results of manualcalculations are obtained as follows
Result: As $\left(\right.$ Eq. 33) $=1100 \mathrm{~mm}^{2} ; \mathrm{As}^{\prime}($ Eq. 34 $)=4227 \mathrm{~mm}^{2}$
2 Shear reinforcement
Initial data required : $\mathrm{fc}^{\prime}=35 \mathrm{MPa} ; \mathrm{fy}=420 \mathrm{MPa} ; \mathrm{b}=350 \mathrm{~mm} ; \mathrm{h}=700 \mathrm{~mm} ; \mathrm{d}^{\prime}=65 \mathrm{~mm}$; $\mathrm{nk}=3 ; \mathrm{ds}=10 \mathrm{~mm} ; \mathrm{Vu}=539 \mathrm{kN}$.
The results of manual calculations are obtained as follows
Result: S (Eq. 36.a to $36 . \mathrm{e}$) $=125.7 \mathrm{~mm}$

3 Torsion reinforcement
Initial data required : $\mathrm{fc}^{\prime}=27.6 \mathrm{MPa} ; \mathrm{fy}=414 \mathrm{MPa} ; \mathrm{b}=356 \mathrm{~mm} ; \mathrm{h}=635 \mathrm{~mm} ; \mathrm{d}^{\prime}=65 \mathrm{~mm}$;
$\mathrm{ds}=11.3 \mathrm{~mm} ; \mathrm{Vu}=180 \mathrm{kN} ; \mathrm{Tu}=50.9 \mathrm{kNm}$; Solid. The results of manual calculations are obtained as follows
Result: S (Eq. 41) $=125 \mathrm{~mm}$; Along $($ Eq. 42 $)=1086 \mathrm{~mm}^{2}$
4 Column uniaxial
Initial data required : $\mathrm{fc}^{\prime}=27 \mathrm{MPa} ; f y=420 \mathrm{MPa} ; \mathrm{h}=400 \mathrm{~mm} ; \mathrm{b}=400 \quad \mathrm{~mm} ; \mathrm{d}^{\prime}=40 \mathrm{~mm}$; $\mathrm{Pu}=400 \mathrm{kN} ; \mathrm{Mu}=250 \mathrm{kNm}$. The results of manual calculations are obtained as follows. Result: a) Cicular: Atot (Eq. $47 \& 48$) $=5348 \mathrm{~mm}^{2}$; b) Rectangulartwo faces: Atot (Eq. 47 \& $48)=3189 \mathrm{~mm}^{2} ; \mathrm{c}$) Rectangular four faces: Atot (Eq. $47 \& 48$) $=3522 \mathrm{~mm}^{2}$
5 Column biaxial
Initial data required $: \mathrm{fc}^{\prime}=27.6 \mathrm{Mpa} \quad ; \mathrm{fy}=414 \mathrm{MPa} ; \mathrm{b}=508 \mathrm{~mm} ; \mathrm{h}=305 \mathrm{~mm} ; \mathrm{d}^{\prime}=63 \mathrm{~mm}$; $\mathrm{Pu}=878 \mathrm{kN} ; \mathrm{Mux}=176 \mathrm{kNm} ; \mathrm{Muy}=103 \mathrm{kNm}$. The results of manual calculations are obtained as follows.
Result : As (Eq. 49) = 6710 mm 2 ; Interaction (Eq. 51) $=98.99 \%$

CONCLUSION

Smartphone calculation and manual calculation are flexural reinforcement, shear reinforcement, torsional reinforcement, column circular reinforcement, column rectangular two faces reinforcement, column rectangular four faces reinforcement, column biaxial reinforcement such as:

Flexural reinforcement: difference $\mathrm{As}=0 \%$; difference As ' $=0.18 \%$ Shear reinforcement: difference $\mathrm{S}=0.08 \%$
Torsional reinforcement: difference $\mathrm{S}=1.12 \%$; difference $\mathrm{Al}=0.51 \%$ Column circular reinforcement: difference Astot=3.16\%
Column rectangular two faces reinforcement: difference Astot $=0.44 \%$
Column rectangular four faces reinforcement: difference Astot $=0.09 \%$
Column biaxial reinforcement: difference $=1.15 \%$
for all cases less than 5%, the calculation of smartphone using Texas Instrument is accurate

REFERENCES

Fachriza Noor Abdi, "ELASTICS ANALYSIS OF SLAB MULTILAYERED PROGRAMMING (EAOSM)," Apl. J. Ilmu Pengetah. dan Teknol., 2008.
R. J. Fernandez, F. M. Javalli, and S. B. Patil, "Analysis and Design of Reinforced Concrete Beams and Columns using open STAAD," Int. J. Soft Comput. Eng., no. 3, pp. 2231-2307, 2017.
U. S. Vektoriarda, P. Gunawan, and Setiono, "Rancang campur beton densitas tinggi dengan bahasa pemrograman borland delphi," Matriks Tek. Sipil, 2014.
A. Kristianto, I. Imran, M. Suarjana, and I. Pane, "Confinement of reinforced -concrete columns with non-code compliant confining reinforcement plus supplementalpen-binder," ITB J. Eng. Sci., 2012, doi: 10.5614/itbj.eng.sci.2012.44.3.2.
T. H. Bagio and Tavio, Dasardasar beton bertulang. Andy Offset, 2019.

Nawy, Tavio, and B. Kusuma, Beton bertulang, sebuah pendekatan mendasar, Jilid 1, 5th edition. itspress, 2010.
P. M. Ferguson, B. Sutanto, and K. Setianto, Dasar-DasarBeton Bertulang, versi SI, 4th ed. Penerbit Airlangga, 1986.
A. C. Galeb, "Optimum design of doubly reinforced concrete beams using simulated annealing," Int. J. Civ. Eng. Technol., 2018.
C. K. Leung and S. H. Simmonds, "REINFORCED CONCRETE COLUMN DESIGN PROGRAM.," Struct. Eng. Rep., 1984.

ACI International, ACI Design Handbook, Design of Structural Reinforced Conrete Elements in

Accordance with the Strength Design Method of ACI 318-95.2001.
P. Bhatt, T. J. MacGinley, and B. S. Choo, Reinforced Concrete: Design Theory and Examples, Third Editd. 2006.
J. C. McCormac and R.H. Brown, Design of reinforced concrete(ninth edition). John Wiley \& Sons, Inc, 2014.
R. Kadarningsih, I. Satyarno, Muslikh, and A. Triwiyono, "Analysis and Design of Reinforced Concrete Beam-column Joint Using King Cross Steel Profile," 2017, doi: 10.1016/j.proeng.2017.01.397.
H. M. Afefy and E. T. M. El-Tony, "Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept," Int. J. Concr. Struct. Mater., vol. 10, no. 3, pp. 393-406, 2016, doi: 10.1007/s40069-016-0132-0.

ACI Committee 318, Building Code Requirements for Structural Concrete. 2014.
Computers \& Structures Inc, Concrete Frame Design Manual ACI318-14, For ETABS. 2004.
Computers \& Structures Inc, Concrete Frame Design Manua1ACI318-14, For SAP2000. 2004.
M. R. Ponanda and M. Mohsin, "Performance of RCC Beams with and without Curtailment," Int. J. Res. Eng. Technol., 2017, doi: 10.15623/ijret.2015.0425011.
I. Muhammad and A. Mahmood, Developing a Computer Program for Analysis and Design of Reinforced Concrete Sections. Nablus: An Najah NationalUniversity, 2004.

Texas Instruments, CE TI-Basic Programming Guide for the TI CE Family of Graphing Calculators. Texas Instruments Incorporated, 2019.
Texas Instruments, Software TI Connect ${ }^{\mathrm{TM}}$ CE. Texas Instruments Incorporated, 2019.

