Traffic Counting using YOLO Version-8 (Case Study of Jakarta-Cikampek Toll Road)

Authors

  • Darmadi Darmadi INDONESIA
  • Pratikso Pratikso INDONESIA
  • Mudiyono Rahmat INDONESIA

DOI:

https://doi.org/10.32832/astonjadro.v13i1.14489

Keywords:

YOLO version 8; traffic volume; Opencv; smartphone; Python and Pytorch.

Abstract

You Only Look Once (YOLO)  version 8 is the latest version of YOLO. YOLO is a common object detection model that offers faster and more accurate results. YOLO applications provide numerous benefits in the fields of health care, traffic control, vehicle safety, energy, agriculture, and industry. The purpose of this article is to use advancements in information technology to automate the process of manually recording traffic counts on the highway. The method utilized in this study is to record a video of traffic movements with a smartphone camera and save it in MP4 format. Calculations are performed at the office after receiving recorded video and utilizing a program written by the author that makes use of Python, Ppencv, Pytorch, and YOLO  version 8 software. When passing through a counter box, the traffic volume is counted and saved in Excel format (.xls). The video records footage near the Halim area of the Jakarta-Cikampek toll road. With a measurement accuracy of 99.63% for cars, 96.66% for buses, and 98.55% for trucks, the accuracy attained using YOLO  version 8 is fairly satisfactory for detecting vehicle volume and categorization.

Author Biographies

Darmadi Darmadi, INDONESIA

Civil Engineering Doctor Program Sultan Agung University (Unissula) Semarang

Pratikso Pratikso, INDONESIA

Civil Engineering Department, Sultan Agung University, Semarang

Mudiyono Rahmat, INDONESIA

Civil Engineering Department, Sultan Agung University, Semarang

References

Asha, C. S., & Narasimhadhan, A. V. (2018). Vehicle Counting for Traffic Management System using YOLO and Correlation Filter. 2018 IEEE International Conference on Electronics, Computing and Communication Technologies, CONECCT 2018, March. https://doi.org/10.1109/CONECCT.2018.8482380

ChangjiangZheng, P. D., & JianJohnLu, P. D. ,P. E. ,Professo. (2009). Intelligent Vehicles Symposium, 2009 IEEE. IEEE.

Dillmann, R., & Huck, M. (1985). Intelligent Simulation of Robot Application. IFAC Proceedings Volumes, 18(16), 547–555. https://doi.org/10.1016/s1474-6670(17)60021-1

Gazoni, E. (2015). openpyxl Documentation. 1–273.

Gündüz, M. Ş., & Işık, G. (2023). A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models. Journal of Real-Time Image Processing, 20(1). https://doi.org/10.1007/s11554-023-01276-w

HonggyuLee, D. Y. T. K. H. K.-H. H. (n.d.). Predictive Intelligent Driver Model using Deep Learning-based.

Ismail, E., Ayoub, B., Azeddine, K., & Hassan, O. (2021). Machine learning in the service of a clean city. Procedia Computer Science, 198, 530–535. https://doi.org/10.1016/j.procs.2021.12.281

Kim, J. A., Sung, J. Y., & Park, S. H. (2020). Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition. 2020 IEEE International Conference on Consumer Electronics - Asia, ICCE-Asia 2020, 8–11. https://doi.org/10.1109/ICCE-Asia49877.2020.9277040

Lee, M. F. R., & Chen, Y. C. (2023). Artificial Intelligence Based Object Detection and Tracking for a Small Underwater Robot. Processes, 11(2). https://doi.org/10.3390/pr11020312

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48

Lohia, A. (2021). DigitalCommons @ University of Nebraska - Lincoln Bibliometric Analysis of One-stage and Two-stage Object Detection Bibliometric Analysis of One-stage and Two-stage Object Detection. February.

Lu, X., Li, Q., Li, B., & Yan, J. (2020). MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12359 LNCS, 541–557. https://doi.org/10.1007/978-3-030-58568-6_32

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32(NeurIPS).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 779–788. https://doi.org/10.1109/CVPR.2016.91

Redmon, J., & Farhadi, A. (2018). YOLO v.3. Tech Report, 1–6. https://pjreddie.com/media/files/papers/YOLOv3.pdf

Sauqi, M. (2022). Deteksi Kendaraan Menggunakan Algoritma You Only Look Once (YOLO) V3. Universitas Islam Indonesia, 5–8.

Shreyas Dixit, K. G., Chadaga, M. G., Savalgimath, S. S., Ragavendra Rakshith, G., & Naveen Kumar, M. R. (2019). Evaluation and evolution of object detection techniques YOLO and R-CNN. International Journal of Recent Technology and Engineering, 8(2 Special issue 3), 824–829. https://doi.org/10.35940/ijrte.B1154.0782S319

Soviany, P., & Ionescu, R. T. (2018). Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction. Proceedings - 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2018, 209–214. https://doi.org/10.1109/SYNASC.2018.00041

Stanley, A. (2021). 6 with YOLO Algorithm and Road HSV Color Model- based Segmentation System Development. C.

Wen, G., Li, S., Liu, F., Luo, X., Er, M. J., Mahmud, M., & Wu, T. (2023). YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection. Sensors (Basel, Switzerland), 23(7), 1–14. https://doi.org/10.3390/s23073367.

Published

2024-01-12

How to Cite

Darmadi, D., Pratikso, P., & Rahmat, M. (2024). Traffic Counting using YOLO Version-8 (Case Study of Jakarta-Cikampek Toll Road). ASTONJADRO, 13(1), 115–124. https://doi.org/10.32832/astonjadro.v13i1.14489

Issue

Section

Articles