

The Application of Mathematics in Economic Science

Jani Subakti *, Agung Wibowo, M. Zakie Hanifan

Universitas Ibn Khaldun Bogor, Indonesia

Jl. Sholeh Iskandar, RT.01/RW.10, Kedungbadak, Kec. Tanah Sereal, Kota Bogor, Jawa Barat 16162

Info Artikel

Keywords:

mathematical economics,
economic models,
quantitative analysis,
microeconomics,
macroeconomics

ISSN (print): 1978-6387

ISSN (online): 2623-050X

Abstract

Mathematics is an essential foundation for modern economic analysis. Through a mathematical approach, the relationships between economic variables can be explained quantitatively and logically. This study aims to examine the application of mathematics in economics, particularly in the context of microeconomics and macroeconomics. The method used is descriptive qualitative, with a literature review approach from various academic sources. The results of the study indicate that the application of mathematics helps economists analyze market behavior, predict economic changes, and formulate more rational policies. Mathematical models such as the demand-supply function, elasticity analysis, and the Solow growth model are concrete examples of how mathematics strengthens economic science.

Author Correspondence:

djan_2010@yahoo.com

1. Introduction

Modern economics has thrived thanks to the significant contributions of mathematics. The use of mathematical methods allows economists to explain economic phenomena objectively and measurably. Since the 19th century, economists such as Léon Walras and Alfred Marshall introduced mathematical approaches to explain market equilibrium and consumer behavior. In an increasingly data-driven world, mathematical skills have become essential for economic researchers and policymakers. Mathematics serves not only as a calculation tool but also as a scientific language for formulating economic theories, making estimates, and making rational decisions. The purpose of this study is to

analyze the role and application of mathematics in economics, both in microeconomic and macroeconomic contexts, and to explain its benefits for economic decision-making.

According to Chiang and Wainwright (2005), mathematical economics is the application of mathematical methods to develop theories and systematically analyze economic problems. Meanwhile, Varian (2010) asserts that mathematical models provide a way for economists to test hypotheses and make data-based predictions. Research by Mankiw (2019) shows that differential calculus helps understand marginal changes in production and consumption behavior. Meanwhile, Solow (1956) introduced a mathematical production function-based economic growth model, which remains a primary reference in macroeconomic analysis.

Economics essentially studies how individuals, households, and businesses make decisions under conditions of limited resources. In practice, various economic problems faced by society—from pricing in traditional markets, production decisions for MSMEs, household financial planning, to the efficient use of production factors—can be systematically analyzed using mathematical economic models. However, the use of these models is often perceived as abstract and far removed from the realities of everyday life, particularly in the context of local economies and the small business sector.

In Indonesia, traditional markets and MSMEs play a strategic role in the national economy. Data from the Ministry of Cooperatives and SMEs shows that MSMEs employ a large portion of the workforce and contribute significantly to gross domestic product. However, many MSMEs and households have not fully utilized an analytical economic approach in decision-making, such as determining selling prices, optimal production scale, profit planning, or calculating long-term investments. As a result, economic decisions are often made solely based on intuition without considering business efficiency and sustainability.

The microeconomic approach offers a variety of relevant and applicable analytical tools to address these issues. The concept of market equilibrium can be used to understand the mechanisms of fair price formation, profit and break-even analysis helps MSMEs manage their cost structures, while the exponential growth

model illustrates the importance of long-term financial planning for households. Furthermore, consumer utility theory and the Cobb-Douglas production function allow for a more measurable and rational analysis of consumption behavior and production efficiency.

Based on these conditions, this article aims to analyze the application of several microeconomic models through simple yet contextual case studies that reflect the economic realities of communities and MSMEs in Indonesia. This study is expected to demonstrate that mathematical economic models function not only as theoretical tools but also have practical value in supporting more effective, efficient, and sustainable economic decision-making. Therefore, this article is expected to provide both academic contributions and practical implications for the development of economic literacy and the strengthening of a people-based economy.

2. Research Method

This research uses a qualitative descriptive method with a library research approach. Data sources were obtained from economics textbooks, reputable international journals, and relevant scientific articles. The analysis was conducted by examining the application of mathematical concepts in economic theory and examining how mathematical models are used in economic decision-making.

3. Results

Application of Mathematics in Microeconomics

In microeconomics, mathematics is used to analyze the behavior of individuals and firms. The supply and demand model can be expressed as: $Q_d = a - bP$ and $Q_s = c + dP$. Market equilibrium occurs when $Q_d = Q_s$, so the equilibrium price and quantity can be determined by solving this system of equations. Furthermore, elasticity analysis uses derivatives to determine the extent to which price changes affect the demand for goods. Utility theory also uses the concept of optimization to determine the consumption combination that provides maximum satisfaction to consumers.

Application of Mathematics in Macroeconomics

In macroeconomics, mathematical models are used to understand the relationships between aggregate economic variables. An example is the Solow (1956) model of economic growth: $Y = AK^{\alpha} L^{(1-\alpha)}$, where Y is total output, K is capital, L is labor, and A is the level of productivity. Using calculus, one can analyze how capital accumulation and productivity increases affect long-run economic growth. Other mathematical models such as IS-LM and AD-AS also help understand the interaction between the real and monetary sectors of the economy.

Benefits of Applying Mathematics in Decision Making

Mathematical models help economists and policymakers make more objective decisions. For example, regression analysis is used to predict the impact of inflation on people's purchasing power. This allows economic decisions to be made based on logical calculations.

not just intuition.

The Role of Mathematics in Economics

Mathematics is a tool for modeling, prediction, and optimization in economics. Through functions, graphs, and derivatives, economic actors can logically understand the relationships between variables. Mathematics also helps measure risk, determine production strategies, and analyze price changes.

Case 1: Market Equilibrium

In a traditional vegetable market, the demand function is $Q_d = 100 - 2P$ and the supply function is $Q_s = 20 + 3P$. Equilibrium occurs when $Q_d = Q_s$, resulting in $P = 16$ and $Q = 68$. This analysis helps sellers understand fair prices.

The supply and demand functions demonstrate a perfectly competitive market structure, where prices are naturally determined through the interactions of market participants. The equilibrium points at $P = 16$ and $Q = 68$ indicate a price that absorbs all farmer production while simultaneously meeting consumer demand.

Elasticity Analysis (Additional Journal Value) shows that the demand elasticity is -0.47, so demand is inelastic, while the supply elasticity is 0.71. Policy implications based on these figures are: Price increases do not significantly reduce demand → consumption stability, price interventions (e.g., HET) have the potential to create

excess demand, and this information is important for local governments in maintaining food price stability.

Case 2: Profits of SMEs Producing Cookies

An MSME sells pineapple tarts. The selling price is Rp50,000, variable costs Rp12,000, and weekly fixed costs Rp350,000. Profit $\pi = 38,000Q - 350,000$. The break-even point is at $Q = 10$. If production is 40 jars, the profit is Rp1,170,000.

The profit model shows that the MSME has a high contribution margin (Rp38,000 per unit). The relatively low break-even point (10 units) reflects a small business risk. Operational analysis based on the case is that the production of 40 units generates a profit of Rp1,170,000, which means the MSME has exceeded the 300% break-even point and the business is in a phase of simple economies of scale. Managerial implications include MSMEs are worthy of increasing production capacity, sensitive to increases in variable costs (raw materials), and can be used as a basis for applying for microfinance (KUR).

Case 3: Growth of Education Funds

With an initial savings of Rp5,000,000 and 5% interest per year, the growth model is $Y = Y_0 e^{(rt)}$. After 8 years, the value becomes Rp7,459,000. This information helps families plan their children's education.

The exponential model demonstrates the long-term effects of compound interest. Growth of approximately 49% over 8 years confirms that time has a greater influence than the initial deposit value, and that long-term savings are more effective than short-term savings. Risk Analysis (Journal Enrichment): The model does not account for inflation; the real value of education funds could be lower if inflation is >5%. Social implications include: Family financial education is crucial. This model is relevant for financial literacy in middle-class households.

Case 4: Maximizing Consumer Utility

A mother shops with a budget of Rp100,000 to buy milk and bread. With utility $U(x,y) = x^{0.5} y^{0.5}$, the optimal combination is 6 milks and 2 loaves of bread.

The Cobb-Douglas function reflects balanced preferences between two goods. Consumers allocate their budgets proportionally according to their relative prices. Analysis of Consumer Rationality: The optimal combination demonstrates the

principle of equimarginal utility. Consumers do not maximize the quantity of goods, but rather their satisfaction. Microeconomic Implications: Price changes will shift the budget line. Food subsidy policies can increase the total utility of households.

Case 5: Cassava Chips Factory Production

A small factory in Lampung uses the Cobb-Douglas production function $Q = 2L^{0.6}K^{0.4}$. With $L=100$ and $K=50$, output is 212 kg. If input increases by 10%, output increases to 238 kg.

Production Analysis The Cobb-Douglas function shows: Return to Scale = $0.6 + 0.4 = 1 \rightarrow$ Constant Return to Scale. A 10% increase in input increases output by ±12.3%. Efficiency Analysis Labor contributes more than capital. Suitable for local labor-intensive industries. Industrial Implications Investment in a more productive workforce. Suitable for the development of regional agro-industrial MSMEs

4. Conclusions

The application of mathematics in economics has made a significant contribution to the development of modern economic theory and practice. Through mathematical models, economic phenomena can be explained more accurately, measurably, and systematically. Mathematics is not merely a tool, but an essential component that strengthens the scientific validity of economic research. Therefore, mastery of mathematics is a crucial skill for economists today and in the future.

5. References

Chiang, A. C., & Wainwright, K. (2005). Fundamental Methods of Mathematical Economics (4th ed.). McGraw-Hill Education.

Mankiw, N.G. (2019). Principles of Economics (9th ed.). Cengage Learning.

Samuelson, P. A., & Nordhaus, W. D. (2010). Economics (19th ed.). McGraw-Hill Education.

Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. *The Quarterly Journal of Economics*, 70(1), 65–94. <https://doi.org/10.2307/1884513>

Varian, H.R. (2010). Intermediate Microeconomics: A Modern Approach (8th ed.).

WW Norton & Company