Diagnosis Kanker Paru-Paru dengan Sistem Fuzzy

Anwar Rifai, Yani Prabowo, Yani Prabowo

Sari


Kanker paru-paru sulit untuk dideteksi sejak dini, akibatnya banyak pasien yang tidak terselamatkan akibat penyakit ini. Guna mengoptimalkan kinerja petugas medis dalam diagnosis awal kanker paru-paru, penelitian ini bertujuan untuk mengembangkan sistem fuzzy pendiagnosis kanker par-paru. Diagnosis dilakukan menggunakan hasil CT-Scan paru-paru dari pasien. Sejumlah 120 data citra CT-Scan digunakan sebagai data set dalam penelitian ini. Data dikelompokkan menjadi dua yaitu 96 citra untuk data latih dan 24 citra untuk data uji. Citra CT-Scan ditingkatkan kualitasnya menggunakan metode intensity adjustment. Selanjutnya setiap citra diekstraksi dalam sepuluh variabel yaitu kontras, korelasi, energi, homogenitas, rata-rata, variansi, standar deviasi, skewnes, kurtosis dan entropi. Data difuzzifikasi untuk digunakan sebagai input dalam membangun sistem diagnosis kanker paru menggunakan inferensi fuzzy mamdani. Tingkat akurasi yang dihasilkan pada sistem dengan intensity adjustment adalah 83,33% pada data uji. Sementara itu, tingkat akurasi tanpa intensity adjustment pada data latih adalah sebesar 92,708% dan pada data uji sebesar 70,83%


Kata Kunci


Kanker Paru-paru; Mamdani; Sistem Fuzzy

Teks Lengkap:

PDF

Referensi


R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2020,” CA. Cancer J. Clin., vol. 70, no. 1, pp. 7–30, 2020, doi: 10.3322/caac.21590.

F. Fatmawati, Panduan Penatalaksanaan Kanker Paru. Jakar: Kementrian Kesehatan Republik Indonesia, 2019.

J. M. Lukeman, “What Is Lung Cancer?,” Perspect. Lung Cancer, pp. 30–40, 2015, doi: 10.1159/000400400.

X. X. Li, B. Li, L. F. Tian, and L. Zhang, “Automatic benign and malignant classification of pulmonary nodules in thoracic computed tomography based on RF algorithm,” IET Image Process., vol. 12, no. 7, pp. 1253–1264, 2018, doi: 10.1049/iet-ipr.2016.1014.

M. I. Fajri and L. Anifah, “Deteksi Status Kanker Paru-Paru Pada Citra Ct Scan Menggunakan Metode Fuzzy Logic,” Tek. Elektro, vol. 7 no. 3, pp. 121–126, 2018.

T. N. Shewaye and A. A. Mekonnen, “Benign-Malignant Lung Nodule Classification with Geometric and Appearance Histogram Features,” 2016, [Online]. Available: http://arxiv.org/abs/1605.08350

D. Palani and K. Venkatalakshmi, “An IoT Based Predictive Modelling for Predicting Lung Cancer Using Fuzzy Cluster Based Segmentation and Classification,” J. Med. Syst., vol. 43, no. 2, 2019, doi: 10.1007/s10916-018-1139-7.

R. Manickavasagam and S. Selvan, “Automatic Detection and Classification of Lung Nodules in CT Image Using Optimized Neuro Fuzzy Classifier with Cuckoo Search Algorithm,” J. Med. Syst., vol. 43, no. 3, 2019, doi: 10.1007/s10916-019-1177-9.

H. Choi et al., “Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs,” Eur. Radiol., vol. 31, no. 5, pp. 2866–2876, May 2021, doi: 10.1007/s00330-020-07431-2.

S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu, 2010.

M. Yildirim and F. Kacar, “Adapting Laplacian based filtering in digital image processing to a retina-inspired analog image processing circuit,” Analog Integr. Circuits Signal Process., vol. 100, no. 3, pp. 537–545, 2019, doi: 10.1007/s10470-019-01481-3.

L. Qiu, J. Lin, W. Chen, F. Wang, and Q. Hua, “A novel method for image edge extraction based on the Hausdorff derivative,” Phys. A Stat. Mech. its Appl., vol. 540, p. 123137, 2020, doi: 10.1016/j.physa.2019.123137.

M. H. Eghbal Ahmadi, S. J. Royaee, S. Tayyebi, and R. Bozorgmehry Boozarjomehry, “A new insight into implementing Mamdani fuzzy inference system for dynamic process modeling: Application on flash separator fuzzy dynamic modeling,” Eng. Appl. Artif. Intell., vol. 90, no. March 2019, p. 103485, 2020, doi: 10.1016/j.engappai.2020.103485.

Y. M. Wang, “Centroid defuzzification and the maximizing set and minimizing set ranking based on alpha level sets,” Comput. Ind. Eng., vol. 57, no. 1, pp. 228–236, 2009, doi: 10.1016/j.cie.2008.11.014.

M. I. Fale and Y. G. Abdulsalam, “Dr. Flynxz – A First Aid Mamdani-Sugeno-type fuzzy expert system for differential symptoms-based diagnosis,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020, doi: 10.1016/j.jksuci.2020.04.016.

S. kansal and R. K. Tripathi, “Adaptive Geometric Filtering Based on Average Brightness of the Image and Discrete Cosine Transform Coefficient Adjustment for Gray and Color Image Enhancement,” Arab. J. Sci. Eng., vol. 45, no. 3, pp. 1655–1668, 2020, doi: 10.1007/s13369-019-04151-8.

T. Manikandan and N. Bharathi, “Lung cancer diagnosis from CT images using fuzzy inference system,” Commun. Comput. Inf. Sci., vol. 250 CCIS, pp. 642–647, 2011, doi: 10.1007/978-3-642-25734-6_110.

U. Ahmed, G. Rasool, S. Zafar, and H. F. Maqbool, “Fuzzy rule based diagnostic system to detect the lung cancer,” 2018 Int. Conf. Comput. Electron. Electr. Eng. ICE Cube 2018, pp. 1–6, 2019, doi: 10.1109/ICECUBE.2018.8610976.

Mila Oktaviyani Lussa, Iveline Anne Marie. " Pemanfaatan Artificial Neural Network dan Fuzzy Inventory Model untuk Penentuan Persediaan Pengaman". Krea-TIF Vol 7 No 2 pp 60-71. DOI: http://dx.doi.org/10.32832/kreatif.v7i2.2235

Yunianto, M., Soeparmi;, & Cari. (2021). Klasifikasi Kanker Paru Paru Menggunakan Nive Bayes dengan Variasi Filter dan Ekstraksi Ciri Gray Levl Co-Occurance Matrix (GLCM). Indonesian Journal of Applied Physics, 11(2), 256. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/download/1051/398/




DOI: http://dx.doi.org/10.32832/krea-tif.v10i1.6317

Article Metrics

Sari view : 260 times
PDF - 130 times

Refbacks

  • Saat ini tidak ada refbacks.


View My Stats